Gamma¶
The gamma distribution has a probability density function defined by
(45)¶\[\begin{split}f_X(x;\alpha,\beta) =
\begin{cases}
\frac{
x^{\alpha-1}
}{
\Gamma(\alpha) \beta^\alpha
}
e^{-x / \beta} & x \ge 0 \\
0 & \text{else}.
\end{cases}\end{split}\]

Figure 61 Gamma distribution with \(\alpha=4.5\) and \(\beta=1\)¶
Interface¶
Gamma random number generator interface:
// generate gamma random variable
float randgammaf(float _alpha,
float _beta);
// compute a gamma probability density
float randgammaf_pdf(float _x,
float _alpha,
float _beta);
// compute a gamma cumulative distribution
float randgammaf_cdf(float _x,
float _alpha,
float _beta);